Esophageal manometry: a valuable tool for the comprehensive management of COVID-19-related hypoxic respiratory failure

Submitted: 3 March 2023
Accepted: 11 March 2023
Published: 6 April 2023
Abstract Views: 246
PDF: 103
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


The optimal management of respiratory failure related to SARS-CoV-2 infection is a subject of heated debates in the scientific community. The lack of solid scientific evidence, combined with the unclear pathophysiology of COVID-19 pneumonia, means that the modalities and duration of ventilator assistance often rely on subjective assessments of the doctor on call. In establishing a suitable respiratory support, it is essential to evaluate the degree of activation of the respiratory muscles as objectively as possible. Among the various methods of evaluating the inspiratory effort, measurement of the phasic variations of esophageal pressure (intended as a surrogate of pleural pressure) represents the gold standard. Esophageal pressure measurement can be implemented in a minimally invasive way in every patient category, does not require sophisticated devices, and provides objective data about respiratory muscle activity. In patients with ongoing COVID-19-related respiratory failure, esophageal pressure monitoring allows i) optimizing the type and settings of noninvasive ventilation, ii) providing objective support in the delicate choice of establishing invasive ventilation in cases in which such an indication is unclear, and iii) monitoring the clinical evolution of COVID-19 pneumonia to allow early interception of cases with progressive worsening of lung function. Esophageal manometry provides a complete and objective assessment of respiratory muscle activity. Its clinical use in patients with respiratory failure in the course of COVID-19 would allow clarifying some pathophysiological aspects of the disease and customizing ventilatory support according to the needs of specific patients.



PlumX Metrics


Download data is not yet available.


Laghi F, Tobin MJ. Indications for mechanical ventilation. In: Tobin MJ, editor. Principles and Practice of Mechanical Ventilation. 3rd ed. NY: McGraw-Hill, Inc.; 2013. p. 101-35.
WHO Coronavirus (COVID-19) Dashboard. Accessed: 03/02/2021. Available from:
Bussani R, Schneider E, Zentilin L, et al. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine 2020:61:103-4. DOI:
Telias I, Brochard L, Goligher EC. Is my patient’s respiratory drive (too) high? Intensive Care Med 2018:44:1936–9. DOI:
Jonkman AH, de Vries HJ, Heunks LMA. Physiology of the respiratory drive in ICU patients: implications for diagnosis and treatment. Crit Care 2020:24:104. DOI:
Tobin MJ, Laghi F, Jubran A. Why COVID-19 silent hypoxemia is baffling to physicians. Am J Respir Crit Care Med 2020:202:356-60. DOI:
Gattinoni L, Marini JJ, Camporota L. The respiratory drive: an overlooked tile of COVID-19 pathophysiology. Am J Respir Crit Care Med 2020:202:1079-80. DOI:
Viola L, Russo E, Benni M, et al. Lung mechanics in type L CoVID-19 pneumonia: a pseudo-normal ARDS. Transl Med Commun 2020:5:27. DOI:
Camporota L, Vasques F, Sanderson B, et al. Identification of pathophysiological patterns for triage and respiratory support in COVID-19. Lancet Respir Med 2020:8:752-4. DOI:
Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med 2020:46:1099-102. DOI:
Tobin MJ. Why physiology is critical to the practice of medicine: a 40-year personal perspective. Clin Chest Med 2019:40:243-57. DOI:
Goligher EC, Laghi F, Detsky ME, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med 2015:41:642-9. DOI:
Vivier E, Mekontso Dessap A, Dimassi S, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med 2012:38:796-803. DOI:
Corradi F, Vetrugno L, Orso D, et al. Diaphragmatic thickening fraction as a potential predictor of response to continuous positive airway pressure ventilation in COVID-19 pneumonia: a single-center pilot study. Respir Physiol Neurobiol 2021:284. DOI:
Telias I, Damiani F, Brochard L. The airway occlusion pressure (P0.1) to monitor respiratory drive during mechanical ventilation: increasing awareness of a not-so-new problem. Intensive Care Med. 2018:44:1532-5. DOI:
Telias I, Junhasavasdikul D, Rittayamai N, et al. Airway occlusion pressure as an estimate of respiratory drive and inspiratory effort during assisted ventilation. Am J Respir Crit Care Med 2020:201:1086-98. DOI:
Esnault P, Cardinale M, Hraiech S, et al. High Respiratory drive and excessive respiratory efforts predict relapse of respiratory failure in critically ill patients with COVID-19. Am J Respir Crit Care Med 2020:202:1173-8. DOI:
Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care 2019:23:346. DOI:
Bellani G, Mauri T, Coppadoro A, et al. Estimation of patient's inspiratory effort from the electrical activity of the diaphragm. Crit Care Med 2013:41:1483-91. DOI:
Sinderby C, Navalesi P, Beck J, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med 1999:5:1433-6. DOI:
Piquilloud L, Beloncle F, Richard JM, et al. Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study. Ann Intensive Care 2019:9:89. DOI:
Jansen D, Jonkman AH, Roesthuis L, et al. Estimation of the diaphragm neuromuscular efficiency index in mechanically ventilated critically ill patients. Crit Care 2018:22:238. DOI:
Grieco DL, Chen L, Brochard L. Transpulmonary pressure: importance and limits. Ann Transl Med 2017:5:285. DOI:
Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care 2020:24:106. DOI:
Mauri T, Cambiaghi B, Spinelli E, et al. Spontaneous breathing: a double-edged sword to handle with care. Ann Transl Med 2017:5:292. DOI:
Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 2016:42:1360-73. DOI:
Yoshida T, Amato MBP, Grieco DL, et al. Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med 2018:197:1018-26. DOI:
Yoshida T, Fujino Y, Amato MB, Kavanagh BP. Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation. Risks, mechanisms, and management. Am J Respir Crit Care Med 2017:195:985-92. DOI:
Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 2012:40:1578-85. DOI:
Cruces P, Retamal J, Hurtado DE, et al. A physiological approach to understand the role of respiratory effort in the progression of lung injury in SARS-CoV-2 infection. Crit Care 2020:24:494. DOI:
Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020:324:782-93. DOI:
Alhazzani W, Evans L, Alshamsi F, et al. Surviving sepsis campaign guidelines on the management of adults with coronavirus disease 2019 (COVID-19) in the ICU: first update. Crit Care Me 2021;49:e219-34. DOI:
Meng L, Qiu H, Wan L, et al. Intubation and ventilation amid the COVID-19 outbreak: Wuhan's experience. Anesthesiology 2020:132:1317-32. DOI:
Ahmad I, Jeyarajah J, Nair G, et al. A prospective, observational, cohort study of airway management of patients with COVID-19 by specialist tracheal intubation teams. Can J Anaesth 2021:68:196-203. DOI:
Arina P, Baso B, Moro V, et al. Discriminating between CPAP success and failure in COVID-19 patients with severe respiratory failure. Intensive Care Med 2021;47:237-9. DOI:
Gattinoni L, Coppola S, Cressoni M, et al. COVID-19 does not lead to a "typical" acute respiratory distress syndrome. Am J Respir Crit Care Med 2020:201:1299-1300. DOI:
Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA 2020:323:2329-30. DOI:
Magill SS, Klompas M, Balk R, et al. Developing a new, national approach to surveillance for ventilator-associated events. Am J Crit Care 2013:22:469-73. DOI:
Tobin MJ. Basing respiratory management of COVID-19 on physiological principles. Am J Respir Crit Care Med 2020:201:1319-20. DOI:
Brusasco C, Corradi F, Di Domenico A, et al. Continuous positive airway pressure in COVID-19 patients with moderate-to-severe respiratory failure. Eur Respir J 2021;57:2002524. DOI:
Oranger M, Gonzalez-Bermejo J, Dacosta-Noble P, et al. Continuous positive airway pressure to avoid intubation in SARS-CoV-2 pneumonia: a two-period retrospective case-control study. Eur Respir J 2020:56:2001692. DOI:
Tonelli R, Fantini R, Tabbì L, et al. Early inspiratory effort assessment by esophageal manometry predicts noninvasive ventilation outcome in de novo respiratory failure. A pilot study. Am J Respir Crit Care Med 2020:202:558-67. DOI:
Gattinoni L, Marini JJ, Busana M, et al. Spontaneous breathing, transpulmonary pressure and mathematical trickery. Ann Intensive Care 2020:10:88. DOI:

How to Cite

Viola, L., Bolondi, G., Bergamini, C., Bissoni, L., Benni, M., Santonastaso, D. P., Vitali, S., Piccinno, M., Mezzatesta, L., Scognamiglio, G., & Circelli, A. (2023). Esophageal manometry: a valuable tool for the comprehensive management of COVID-19-related hypoxic respiratory failure. Acute Care Medicine Surgery and Anesthesia, 1(1).